

Investitionsmaßnahmen zur Herstellung der Resilienz deutscher Krankenhäuser

Pressekonferenz, 28. Oktober 2025

Die Sicherheitslage in Deutschland und der EU ist angespannt

Beispiele

POLENS MINISTERPRÄSIDENT

Donald Tusk rechnet mit russischem Angriff auf EU schon 2027

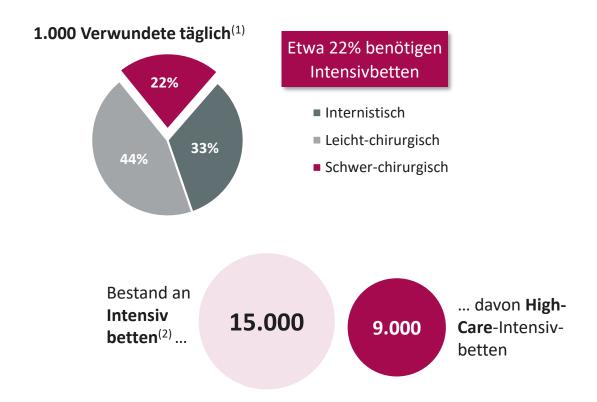
Veröffentlicht am 26.07.2025

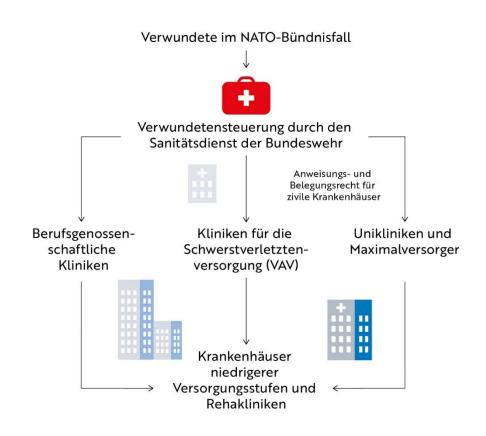
Uniklinik Frankfurt nach 10 Monaten wieder online

erreichbar

Beschädigte Tiefseekabel

Wie angreifbar ist die Infrastruktur in der Ostsee?

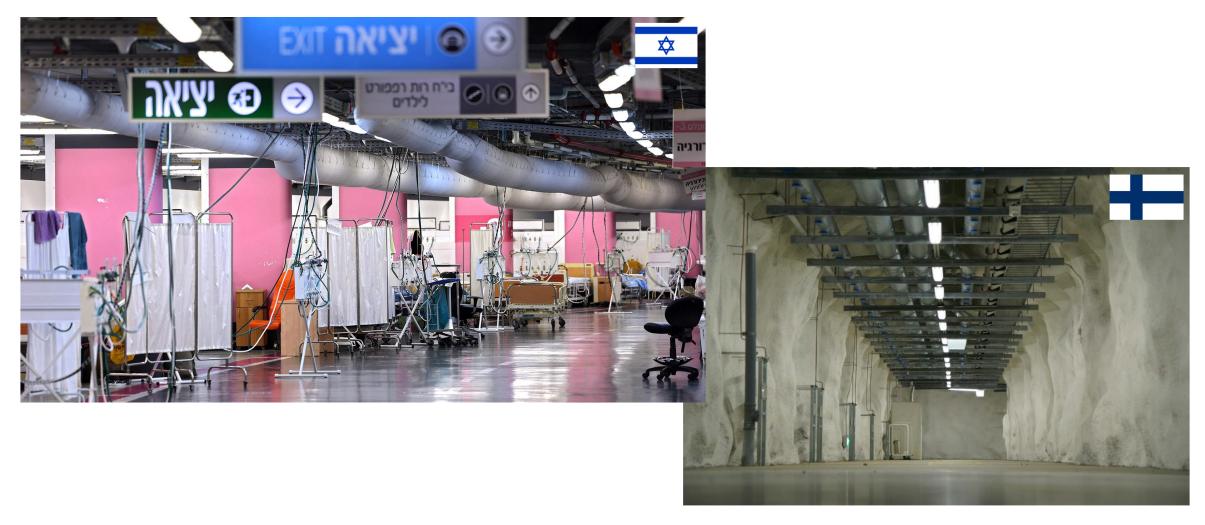

Immer wieder kommt es in der Ostsee zu Zwischenfällen mit beschädigten Tiefseekabeln. Behörden vermuten Sabotage durch Russlands sogenannte Schattenflotte. Wie hoch ist das Risiko weiterer Angriffe?


16.04.2025

Im NATO-Bündnisfall bis zu 1.000 Verwundete täglich, die in Deutschland zu versorgen wären

Intensivbetten sollten zwar ausreichen; es braucht aber Maßnahmen, um die Resilienz der Krankenhäuser zu erhöhen

Quelle: Eigene Darstellung und Karagiannidis, Augurzky und Alscher (2025)



⁽¹⁾ Schätzungen auf Basis der Experteninterviews, auch die Aufteilung auf die drei Kategorien

⁽²⁾ DIVI-Intensivregister (Stand 27.08.2025)

In Finnland und in Israel kann der Krankenhausbetrieb rasch unterirdisch fortgeführt werden

Quelle: NBC News (2023), "Get an inside look at the world's largest underground hospital in Israel" (31.10.2023), ABC News (2018) – "Helsinki's sprawling underground tunnel network offers shelter from Russia's potential threat" (22.7.2018)

Ebenso besteht die Möglichkeit, mobile moderne Feldlazarette einzusetzen

Kosten von rund 9 Mio. €

Kapazität von **32 Betten**, darunter **8 Intensivbetten**

Modernste Ausstattung mit OP, Sterilisationsanlagen, diagnostischer Bildgebungstechnik (Röntgen u. CT), Labor und Apotheke

Im Gutachten untersuchen wir drei Szenarien

Je Szenario schätzen wir den Investitionsbedarf und zusätzliche Betriebskosten zur Verbesserung der Resilienz ab

Abwehr von Sabotageakten
Schutz vor Cyberangriffen

Verteidigung der Ostgrenze

Versorgung von **Verletzten** von **Bündnispartnern**

Verteidigung von Angriffen auf **Deutschland**

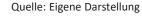
Versorgung von Verletzten aus Deutschland

Jährliche **Betriebskosten** für Maßnahmen je Szenario

Dabei identifizieren wir drei Arten von Maßnahmen zur Verbesserung der Resilienz

Technische Resilienz

Technische Infrastruktur und Energieversorgung, IT- und Kommunikationssicherheit



Bauliche Resilienz

Schutz des Krankenhauses, Aufbau und Nutzung geschützter Räume (z.B. Keller), Ausweitung der Lagerhaltung

Personelle Resilienz

Zusatzausbildung und Schulungen

Bauliche Resilienz umfasst Schutz des Krankenhausbetriebs und Aufbau von Lagerkapazitäten

Investitionen Betriebskosten

Schutz des Krankenhauses

Detektionsgeräte für Zugangskontrollen

Schutzmaßnahmen je nach Situation (Pufferbetrag)

Objektschutz

Oberirdischer Aufbau redundanter Infrastruktur (ZNA, OP, Intensiv, Diagnostik)

Zugangskontrollen mit Wachschutz als Mindestschutz

Sicherheitsmanagement hinsichtlich der Mitarbeiter

Aufbau und Nutzung geschützter Räume

Tiefgaragen und Keller als Ausweichbehandlungsräume

Sicherstellung der Infrastruktur für Strom, Wasser, Gase, Licht, Belüftung

Bauliche Schutzmaßnahmen (Gasanschlüsse, Abdichtung, Böden)

Vorbereitung **Dekontaminations- und Sichtungsbereiche**

Ausweitung der Lagerhaltung

(Aus-)Bau von Lagern z.B. für medizinische Vorräte, Sanitätsmaterial, Feldliegen, CBRN-Material

Erweiterte Kapazitäten für Bestattungen

Technische Resilienz umfasst Infrastruktur, Energie, IT und Kommunikation

Investitionen Betriebskosten

Technische Infrastruktur und Energieversorgung

Energie, u.a. Notstromaggregate, Photovoltaik, Batteriespeicher, Mobile Notstrommodule

Belüftungssysteme (medizinische Gase insbesondere für CBRN)

Reserven (Kraftstoff, Trinkwasser(-aufbereitung))

Detektionssysteme (Kontamination von Wasser- od. Lüftungsanlage)

(Mobile) **Dekontaminationsanlage**

Ausbau PIS-Landestellen (§ 6 LuftVG - Konformität)

Priorisierung kritischer Bereiche (OP, ITS, EDV, NA)

Jährliche Wartung des Rechenzentrums

Funk-/Satellitenkommunikation

IT- und Kommunikationssicherheit

Redundante Server (KRITIS-konformes Rechenzentrum)

Backups, Offline-Dokumentation, redundante und netzunabhängige Hardware

Edge-Computing-Infrastruktur

Funk- und Satellitenkommunikation als Notfallalternative

Systeme zur Angriffserkennung (SIEM-Systeme)

CDR-Systeme

Cybersecurity-Maßnahmen (Schulungen, Tests)

Koordinierungs- und Rufsysteme (Bereitschaftspläne)

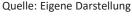
SIEM/SOC

CDR-Systeme

Personelle Resilienz umfasst Expertise des Personals für Krisenfälle

Personal

Zusatzausbildung für chirurgisches und traumatologisches Personal Weiterbildung **Disaster Nurse**


Schulungen sämtlichen Personals (z.B. Triage, CBRN, Selbstschutz, Kommunikation)

Reservekräfte (ehemalige Mitarbeiter, Reservisten, Freiwillige): Führung einer Liste ehemaliger Mitarbeiter im Krankenhaus

Regelmäßige Übungen, Bereitschaftspläne, Rufsysteme

Psychologische Unterstützung für Personal und Patienten

Investitionen Betriebskosten

Experten sehen fünf zentrale Verwundbarkeiten im Krankenhausbetrieb

Personalmangel

Überlastung bereits im Regelbetrieb, kaum Reserven für den Krisenfall

Cybersicherheit

Gefahr durch Angriffe, Rückkehr zur Papierdokumentation droht

Physische Sicherheit

Offene Gebäude, mangelnde Zutrittskontrollen

Lieferengpässe

Geringe Lagerkapazitäten für Arznei- und Medizinprodukte

CBRN-Vorsorge

Fehlende Ausstattung und Schulung

Quelle: Eigene Darstellung, Icons: Flaticon.com

Sicherheits- und Infrastrukturdefizite offenbaren Handlungsbedarf

Schutz des Krankenhauses

Geschütze Räume

Lagerhaltung

Energieversorgung

IT-Sicherheit

Basisschutz vorhanden

Umfassende Sicherheitsinfrastruktur ausbaufähig

Defizite bei Videoüberwachung, Zutrittskontrollen und Abriegelungssystemen 26% können Tiefgaragen oder Kellerräume nutzen, wobei notwendige

Bunkeranlagen größtenteils nicht vorhanden Mehrheit nicht auf längere Krisenzeiten vorbereitet

42 % haben keine zusätzlichen Lagerkapazitäten

Teilweise Absprachen mit Lieferanten und erweiterte Lagerhaltung Fast alle KH sind gegen Stromausfälle gewappnet

Mehrheit ist nicht auf längere Stromausfälle vorbereitet

Lediglich lebenswichtige Bereiche sind an Notstromversorgung angeschlossen Basis-IT-Infrastruktur bei 2/3 der Häuser vorhanden

Defizite in Cybersicherheit und Notfallkommunikation

Segmentierte Netzwerkarchitektur oft nicht gegeben

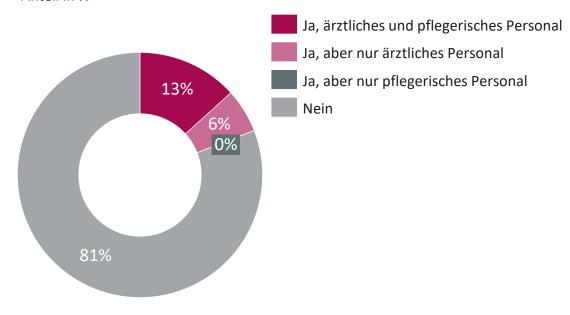
Personelle Engpässe und fehlende Vorbereitung im Krisenfall

Mehrheitlich (81%) keine gezielte Fortbildung im Bereich Katastrophenmedizin

Unzureichende psychosoziale Unterstützung, Gefahr von Personalausfällen

Mehrfachverplanung durch Ehrenamt im Katastrophenschutz

Erweiterung von Betten- und Intensivkapazitäten abhängig von der Personalverfügbarkeit und -qualifikation

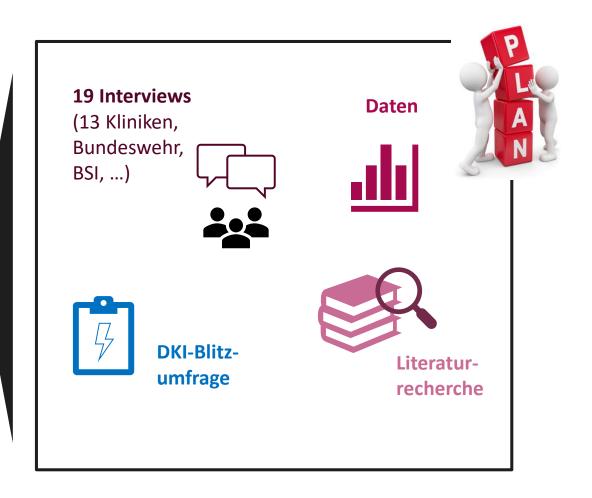

KAEP: nur 26% der Krankenhäuser mit Konzept für den Verteidigungsfall

Vernetzung der Krankenhäuser zu anderen kritischen Infrastrukturen unzureichend

Werden chirurgisches und traumatologisches Personal sowie Pflegekräfte gezielt in Katastrophenmedizin (z. B. Disaster Nurse) fortgebildet?

Anteil in %

Quelle: Eigene Darstellung, Icons: Flaticon.com

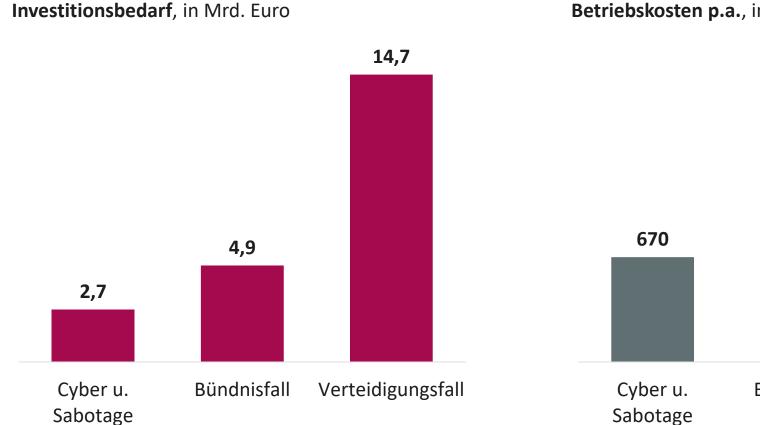


Ableitung der Investitionsbedarfe und zusätzlicher Betriebskosten in mehreren Schritten

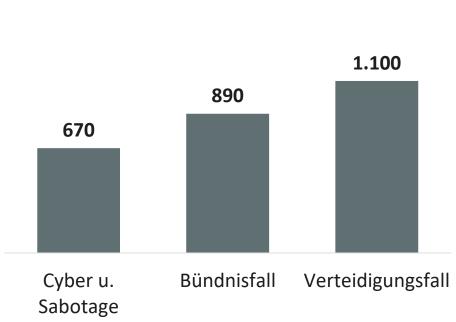
Rückgriff auf öffentliche Daten, Literatur, Interviews und eine Blitzumfrage unter Krankenhäusern

Wir unterscheiden sieben Krankenhaustypen, die die Maßnahmen in unterschiedlichem Ausmaß umsetzen sollten

	Standorte	Betten
Allgemeinkrankenhäuser	1.614	451.517
Universitätskliniken	42	49.150
Bundeswehrkrankenhaus	5	1.685
BG-Kliniken	9	3.576
GBA-Notfallstufe 3	140	92.514
GBA-Notfallstufe 2	276	112.235
GBA-Notfallstufe 1	615	133.294
Keine GBA-Notfallstufe	527	59.063
Nachrichtlich: sonstige Krankenhäuse	695	49.817
Psychiatrische Kliniken	320	41.763
Tages-/Nachtkliniken	375	8.054

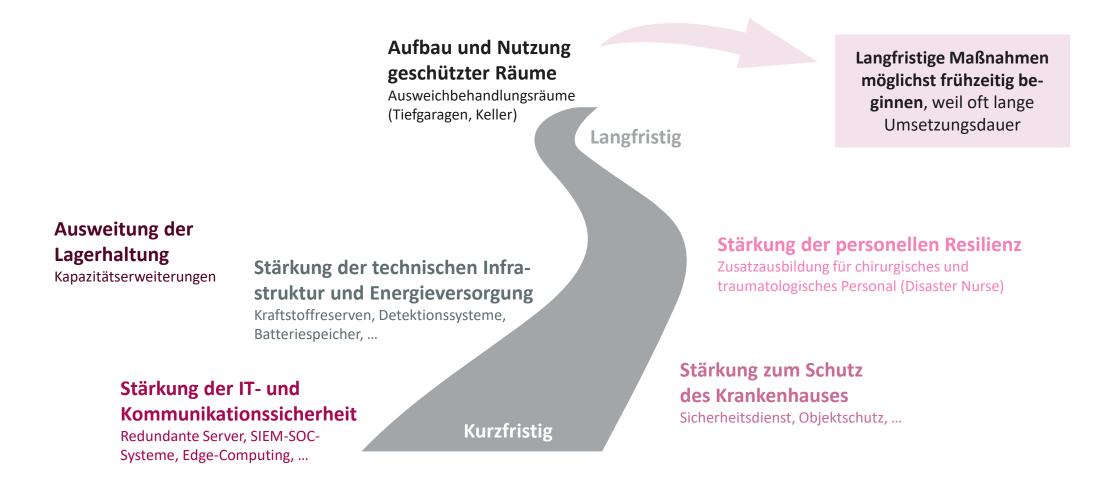

Uniklinika, BW- und BG-Kliniken separat ausgewiesen; sie werden in GBA-Notfallstufen nicht mitgezählt, um Doppelzählungen zu vermeiden

42 Standorte Uniklinika, weil einige über **mehrere Standorte** verfügen



Je nach Szenario ergeben sich unterschiedliche Investitionsbedarfe

Außerdem entstehen zusätzliche Betriebskosten, die nicht in den DRG abgebildet sind


Betriebskosten p.a., in Mio. Euro

Quelle: Eigene Berechnungen

Schnell umsetzbare Maßnahmen priorisieren, um bis 2027 die nötige Resilienz zu erreichen

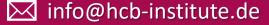
Wegen langer Umsetzungsdauer auch Baumaßnahmen frühzeitig starten

Quelle: Eigene Darstellung

DEUTSCHES KRANKENHAUS INSTITUT

Vielen Dank!

hcb GmbH


Friedrich-Ebert-Str. 55

45127 Essen

Deutschland

+49 (0)201 / 29 39 3000

Deutsches

Krankenhausinstitut **GmbH**

Prinzenallee 13

40549 Düsseldorf

Deutschland

+49 (0)211 / 47 05 10

info@dki.de

dki.de

in DKI Deutsches

Krankenhausinstitut